

Decomposing a three-way dataset of TV-ratings when this is impossible

Alwin Stegeman

a.w.stegeman@rug.nl

www.alwinstegeman.nl

Summarizing Data in Simple Patterns

Information Technology → collection of huge data sets,
often multi-way data $z(i,j,k,\dots)$

Approximation: Multi-way data \approx simple patterns

- data interpretation (psychometrics, neuro-imaging, data mining)
- separation of chemical compounds (chemometrics)
- separation of mixed signals (signal processing)
- faster calculations (algebraic complexity theory, scientific computing)

Simple structure = rank 1

2-way array = matrix \mathbf{Z} ($I \times J$) with entries $z(i,j)$

rank 1: $\mathbf{Z} = \mathbf{a} \mathbf{b}^T = \mathbf{a} \circ \mathbf{b} \iff z(i,j) = a(i) \cdot b(j)$

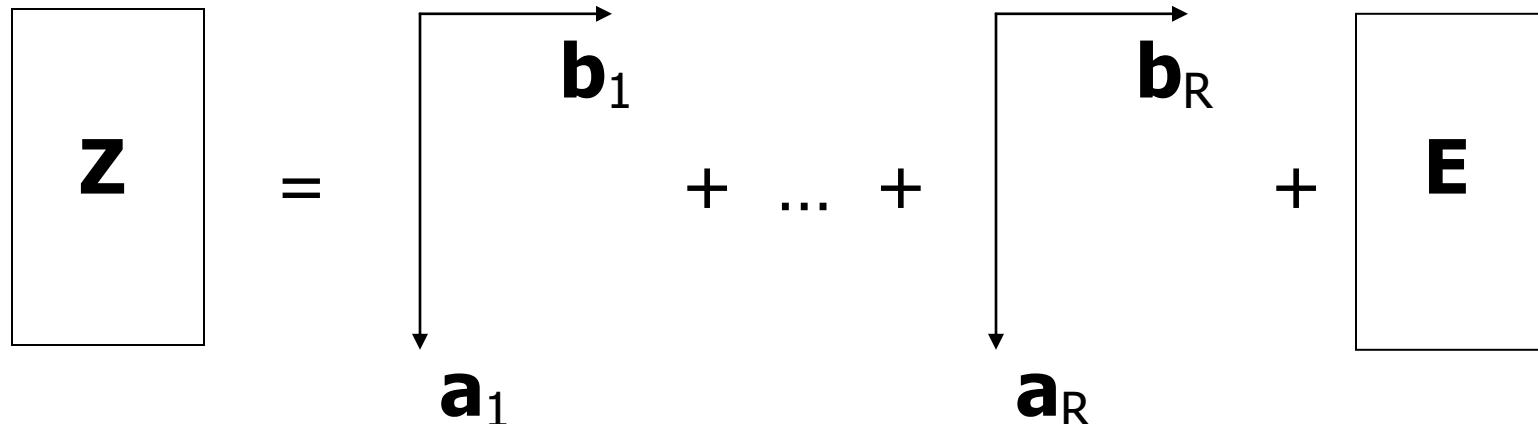
rank(\mathbf{Z}) = $\min \{R : \mathbf{Z} = \mathbf{a}_1 \circ \mathbf{b}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R\}$

3-way array \mathbf{Z} ($I \times J \times K$) with entries $z(i,j,k)$

rank 1: $\mathbf{Z} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \iff z(i,j,k) = a(i) \cdot b(j) \cdot c(k)$

rank(\mathbf{Z}) = $\min \{R : \mathbf{Z} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R\}$

2-way (PCA) decomposition

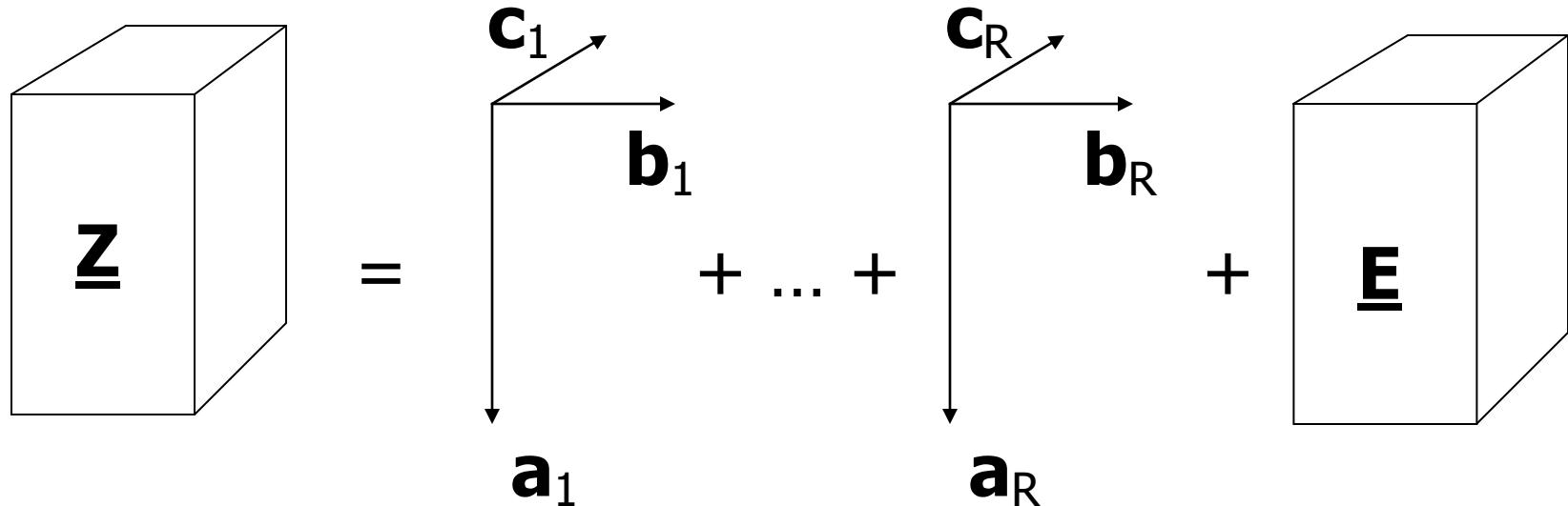


$$Z = a_1 \circ b_1 + \dots + a_R \circ b_R + E$$

$$= A B^T + E \quad \text{with} \quad A = [a_1 \dots a_R] \\ B = [b_1 \dots b_R]$$

Goal: Find (A, B) that minimize $\text{ssq}(E)$

3-way Candecomp/Parafac (CP)



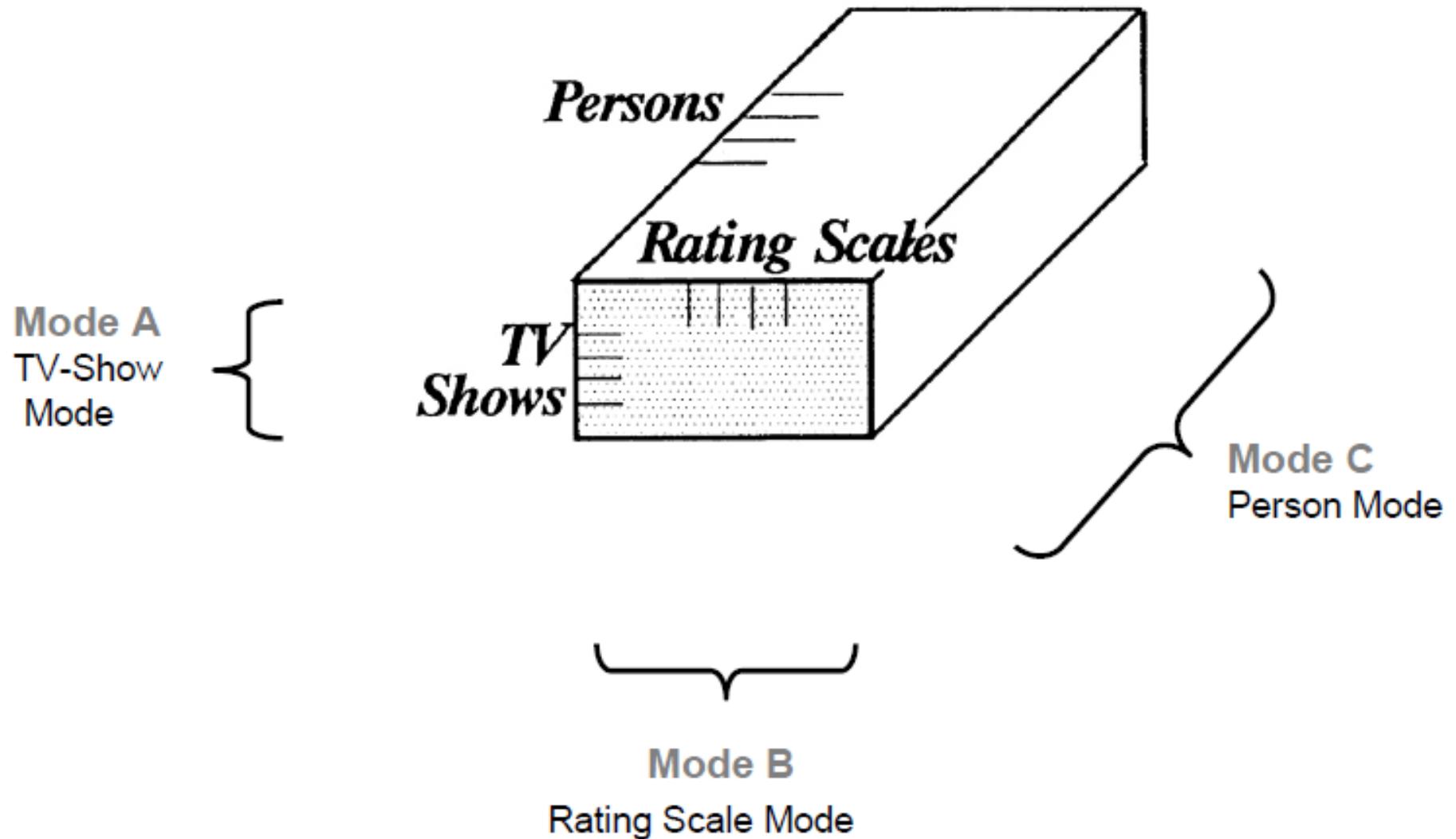
$$\underline{Z} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \dots + \mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R + \mathbf{E}$$

Goal: Find **(A,B,C)** that minimize **ssq(E)**

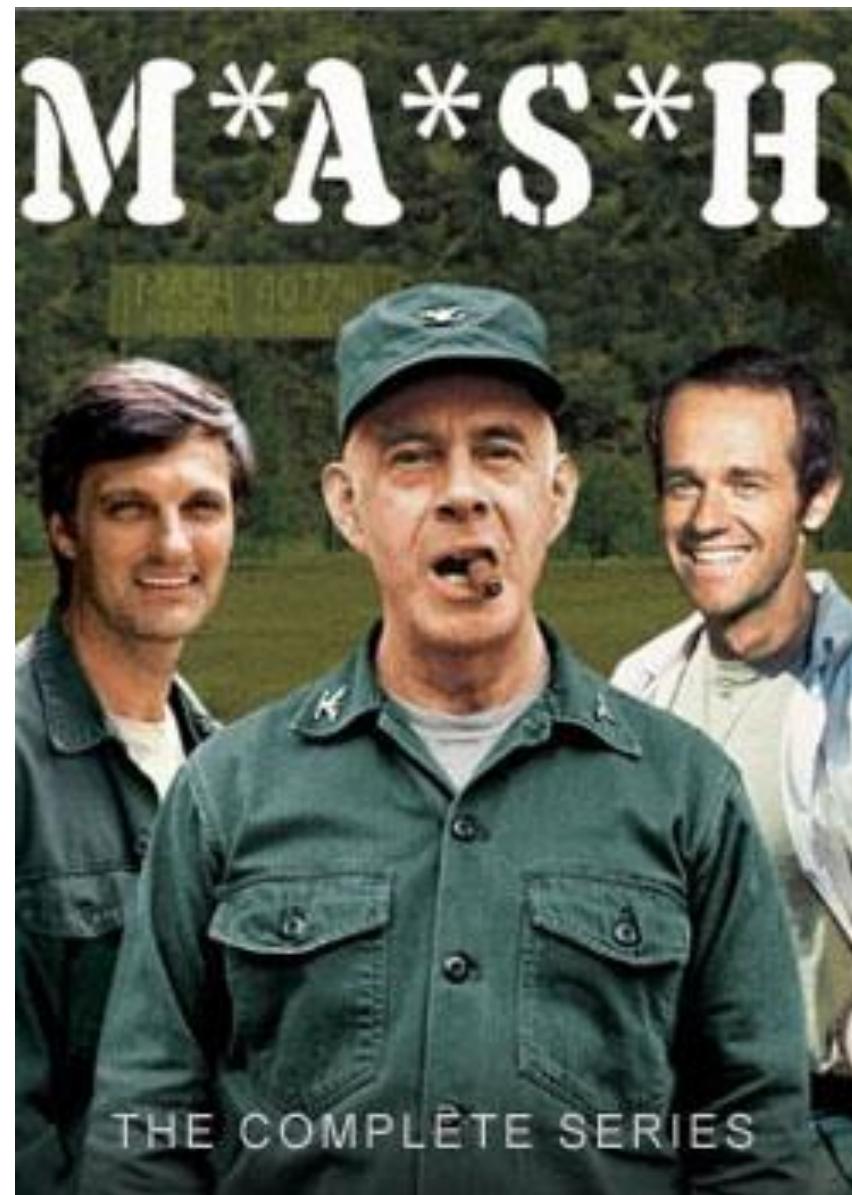
with **C = [c₁ ... c_R]**

	3-way CP	2-way decomp
computation	iterative algorithm	SVD
best rank- R approximation	yes	yes
rotational uniqueness	under mild conditions	no
existence for $R < \text{rank}(\text{data})$	not guaranteed	yes

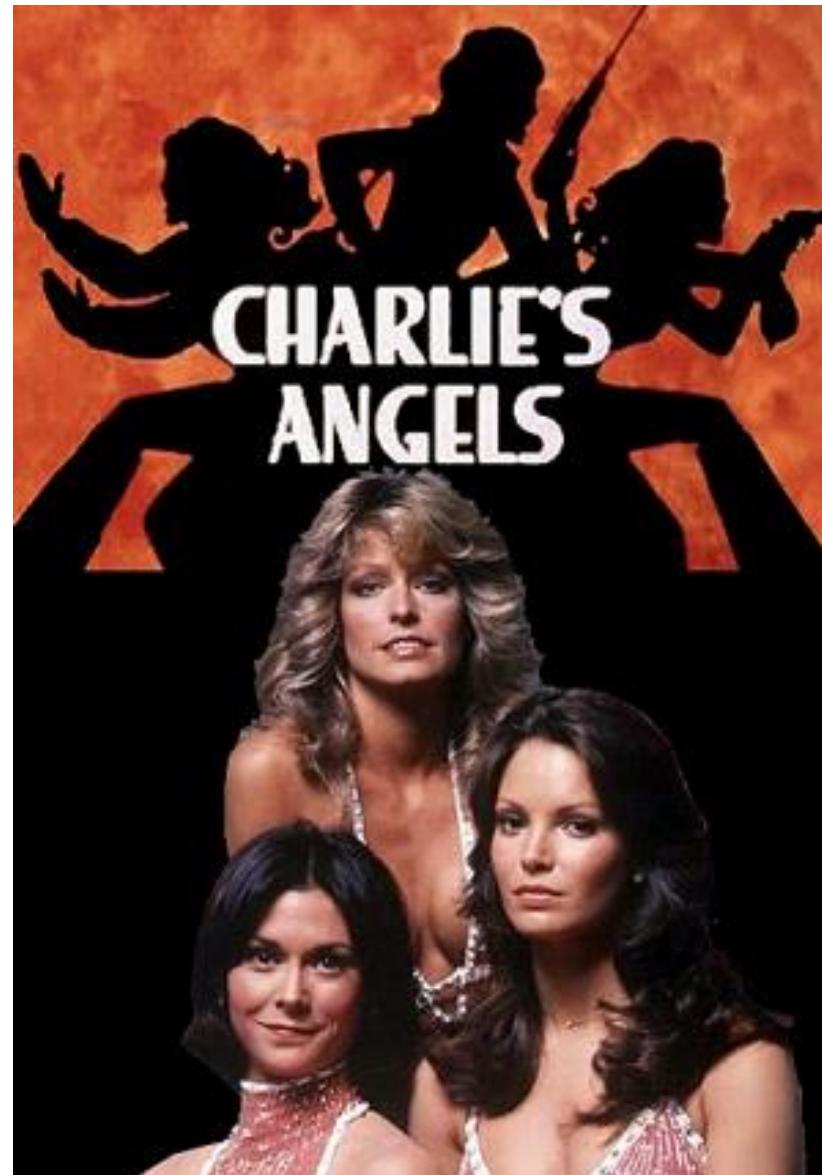
CP analysis of 3-way TV-ratings data



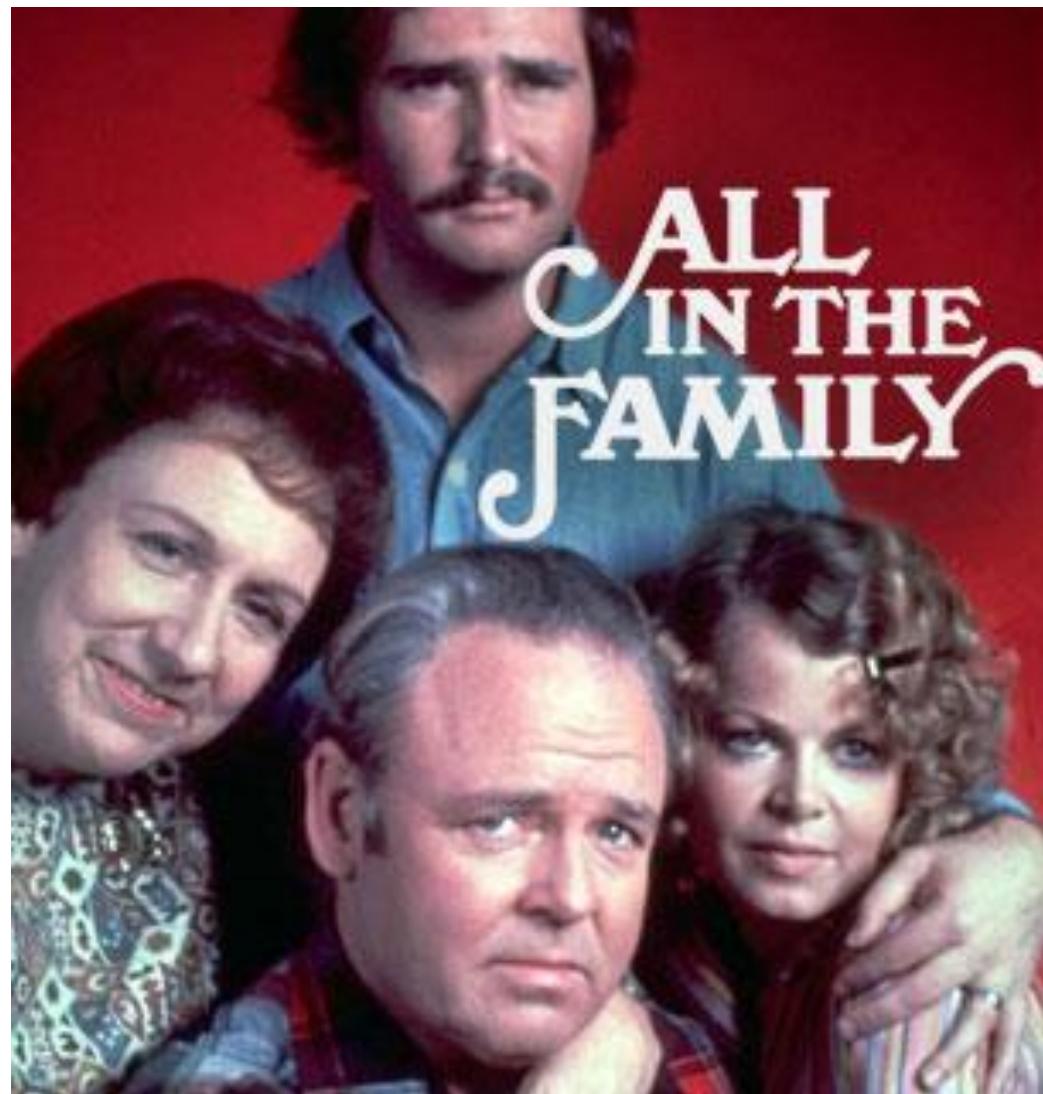
TV show 1 – Mash



TV show 2 – Charlie's Angels



TV show 3 – All in the Family



TV show 4 – 60 Minutes

TV show 5 – The Tonight Show

TV show 6 – Let's Make a Deal

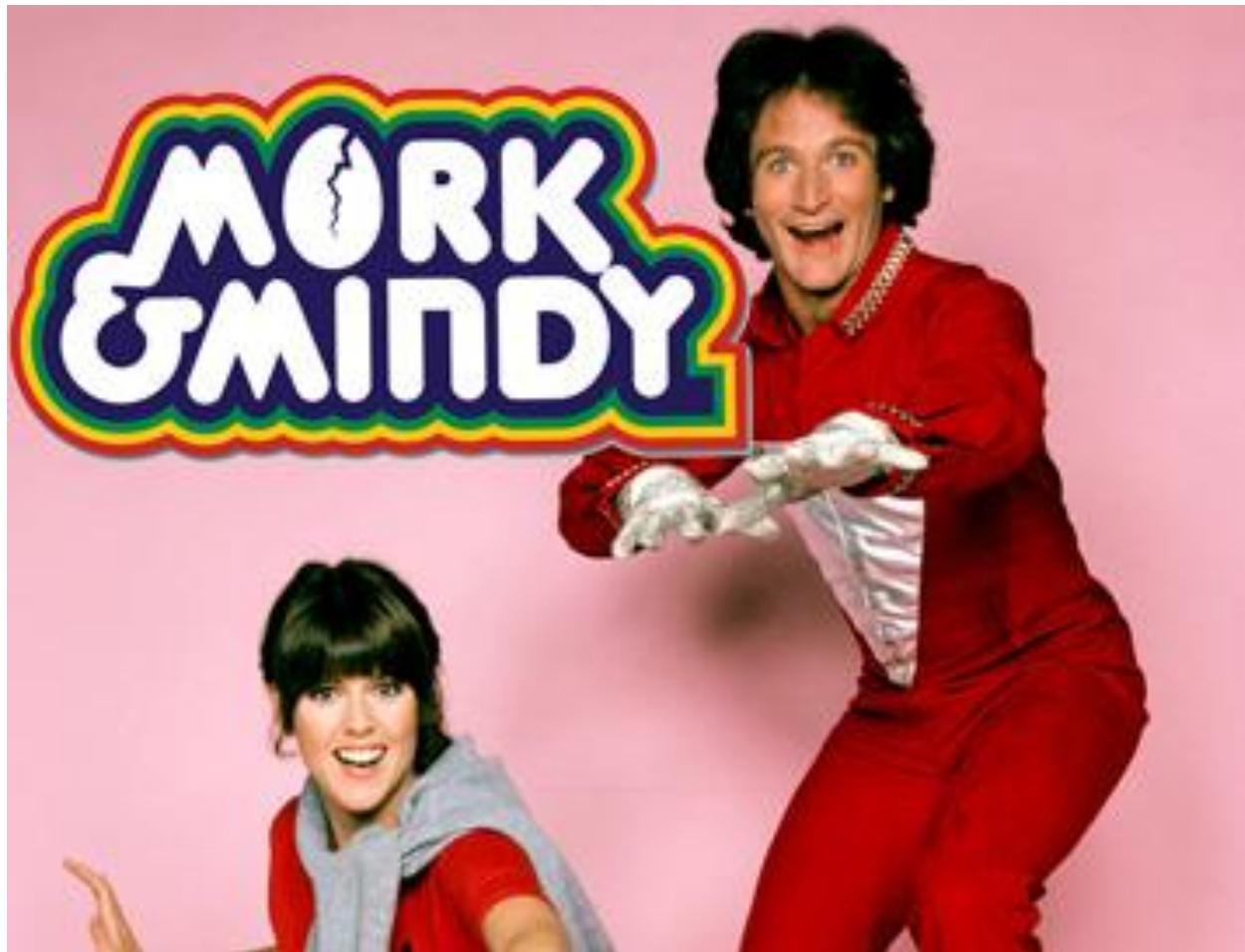
TV show 7 – The Waltons

TV show 8 – Saturday Night Live

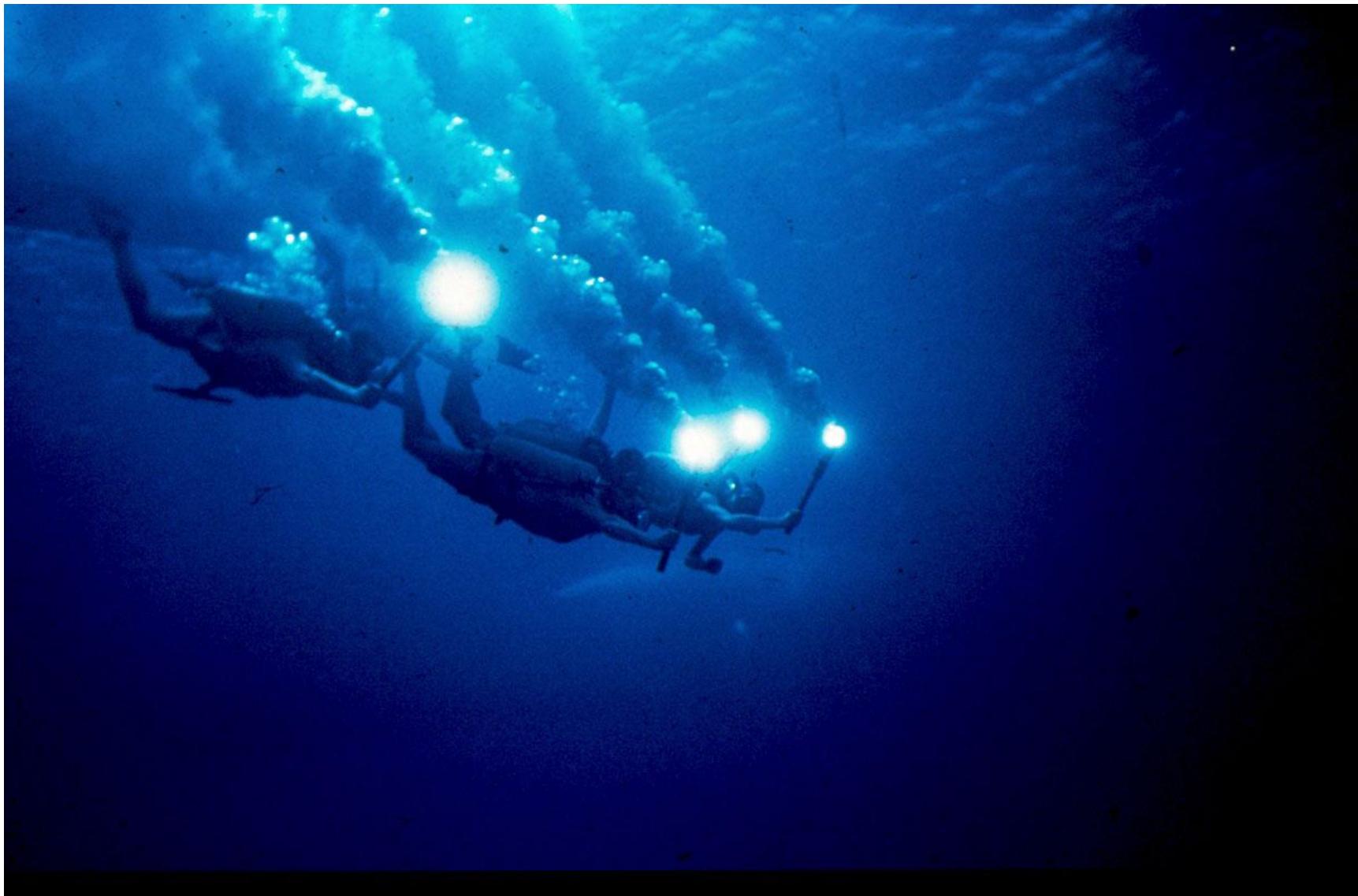
TV show 9 – News

TV show 10 – Kojak

TV show 11 – Mork and Mindy



TV show 12 – Jacques Cousteau



TV show 13 – Football

TV show 14 – Little House on the Prairie

TV show 15 – Wild Kingdom

Rating Scales 1-8

-6, -5, ..., -1, 0, 1, ..., 5, 6

1. Thrilling . . . Boring
2. Intelligent . . . Idiotic
3. Erotic . . . Not Erotic
4. Sensitive . . . Insensitive
5. Interesting . . Uninteresting
6. Fast Slow
7. Intellectually . Intellectually
Stimulating . . Dull
8. Violent . . . Peaceful

Rating Scales 9-16

-6, -5, ..., -1, 0, 1, ..., 5, 6

- 9. Caring Callous
- 10. Satirical Not Satirical
- 11. Informative . . Uninformative
- 12. Touching . . . "Leaves Me Cold"
- 13. Deep Shallow
- 14. Tasteful Crude
- 15. Real Fantasy
- 16. Funny Not Funny

TV-ratings data

30 persons have rated 15 TV shows on 16 rating scales

Preprocessing:

- Centering across rating scales
- Centering across TV shows
- Normalizing within persons

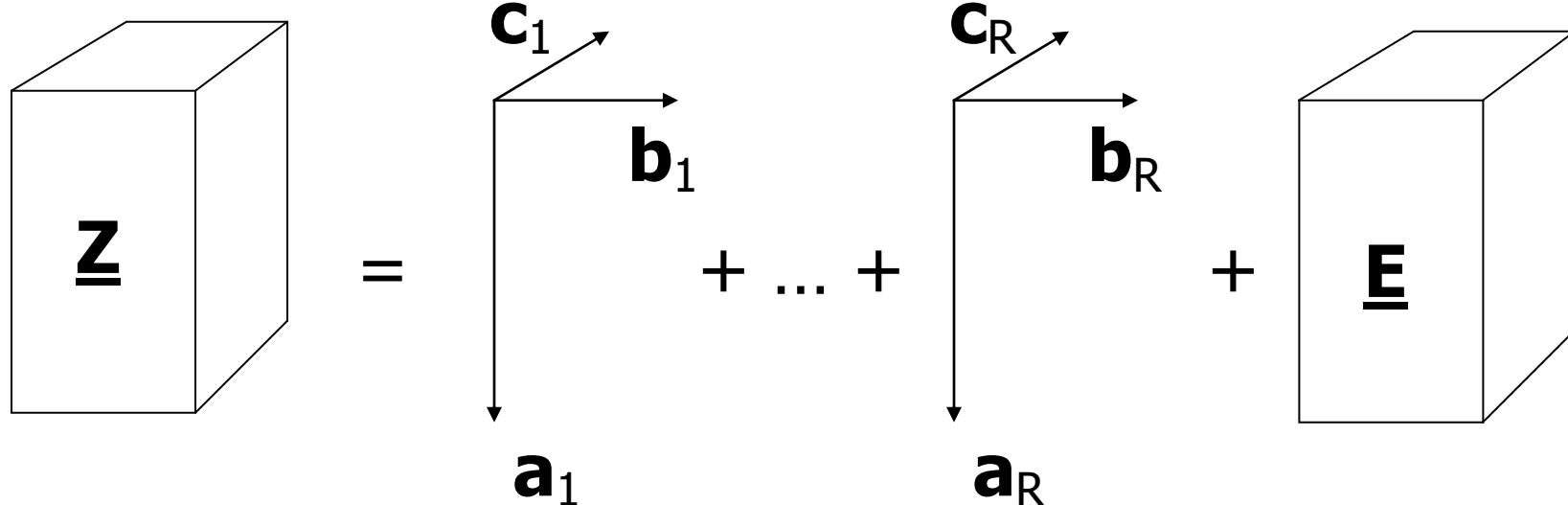
TV data also analyzed by Lundy et al. (1989) and Harshman (2004)
Analysis presented is by Stegeman (2014)

Output of the CP analysis with R components

Matrix **A** (15×R): columns are TV show components

Matrix **B** (16×R): columns are rating scales loadings

Matrix **C** (30×R): columns are person loadings



Scaling the CP solution

Column of **A**: mean squared component score = 1

Column of **B**: mean squared loading = 1

Column of **C**: sum of squared loadings = 4

$$\underline{Z} = g_1 (\mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1) + \dots + g_R (\mathbf{a}_R \circ \mathbf{b}_R \circ \mathbf{c}_R) + \underline{E}$$

weight g_r indicates strength of component r

columns are sign changed such that **C** has positive loadings

Fit of the CP solution

$$\text{Fit \%} = 100 - 100 \text{ ssq}(\underline{\mathbf{E}}) / \text{ssq}(\underline{\mathbf{Z}}) \quad (\text{range 0 to 100})$$

Congruence coefficient of two components

$$\text{cc}_A(1,2) = \frac{\mathbf{a}_1^T \mathbf{a}_2}{\sqrt{\text{ssq}(\mathbf{a}_1)} \sqrt{\text{ssq}(\mathbf{a}_2)}} \quad (\text{range -1 to +1})$$

$$\text{cc}(1,2) = \text{cc}_A(1,2) \text{cc}_B(1,2) \text{cc}_C(1,2)$$

The CP solution with 2 components

Overall: $\text{fit} = 41.96\%$ $\text{cc}(1,2) = 0.002$

Component 1: $\text{fit} = 28.46\%$ $g_1 = 1.46$

Component 2: $\text{fit} = 13.59\%$ $g_2 = 1.01$

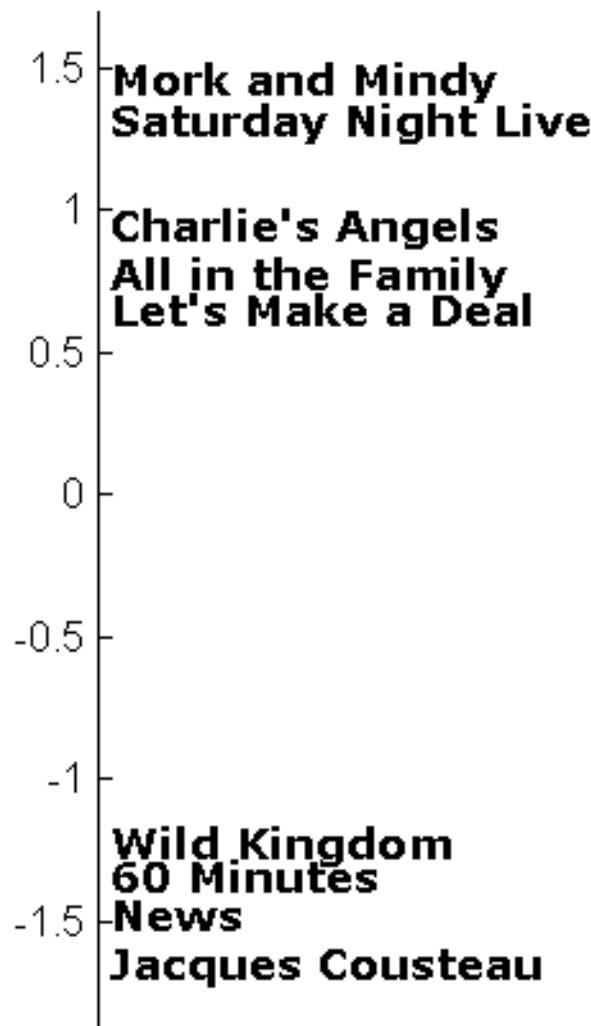
Interpretation:

Component 1 = "Humor"

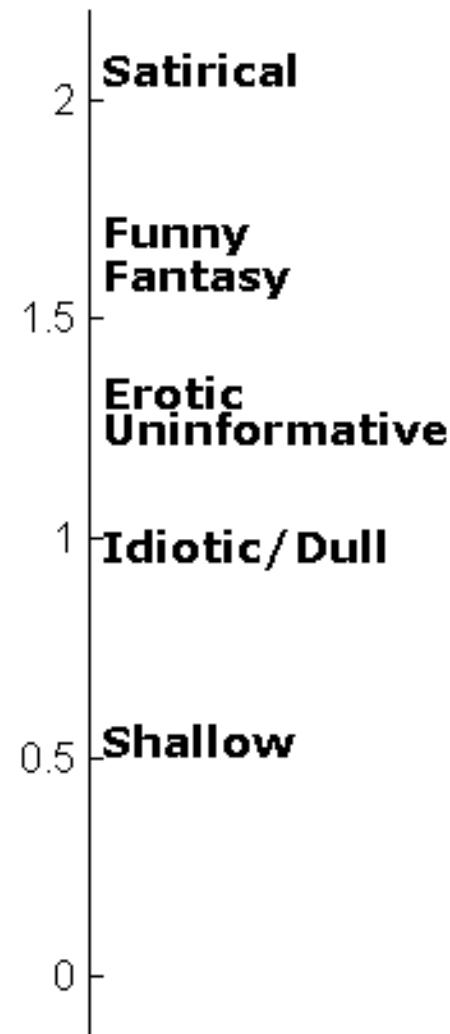
Component 2 = "Sensitivity"

Component 1 = "Humor"

TV shows mode

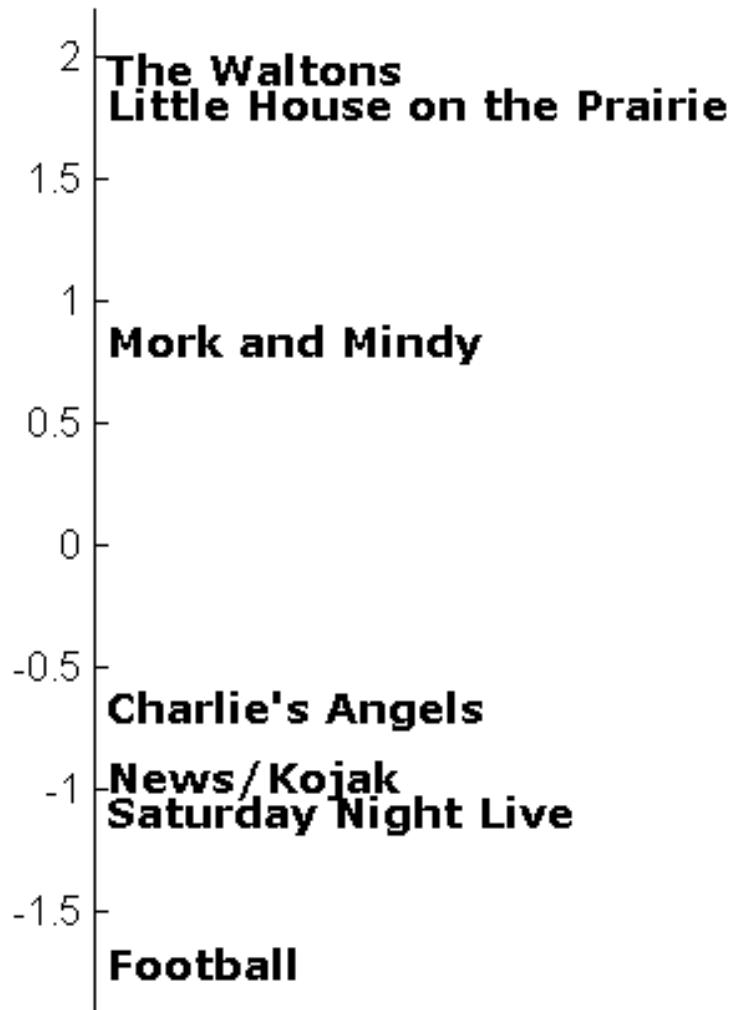


Scales mode

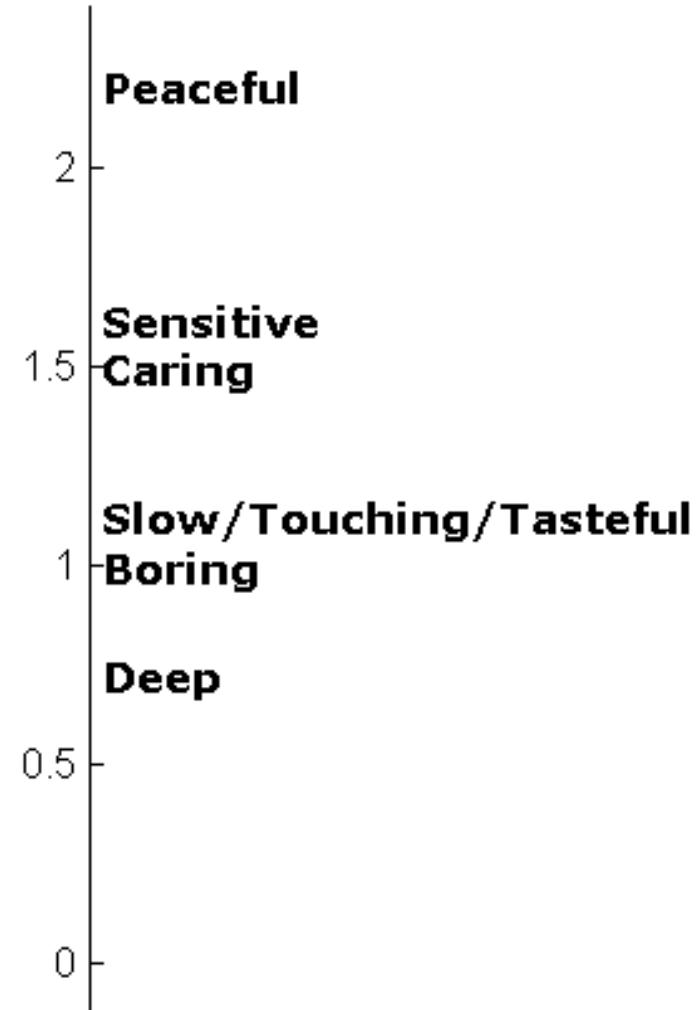


Component 2 = "Sensitivity"

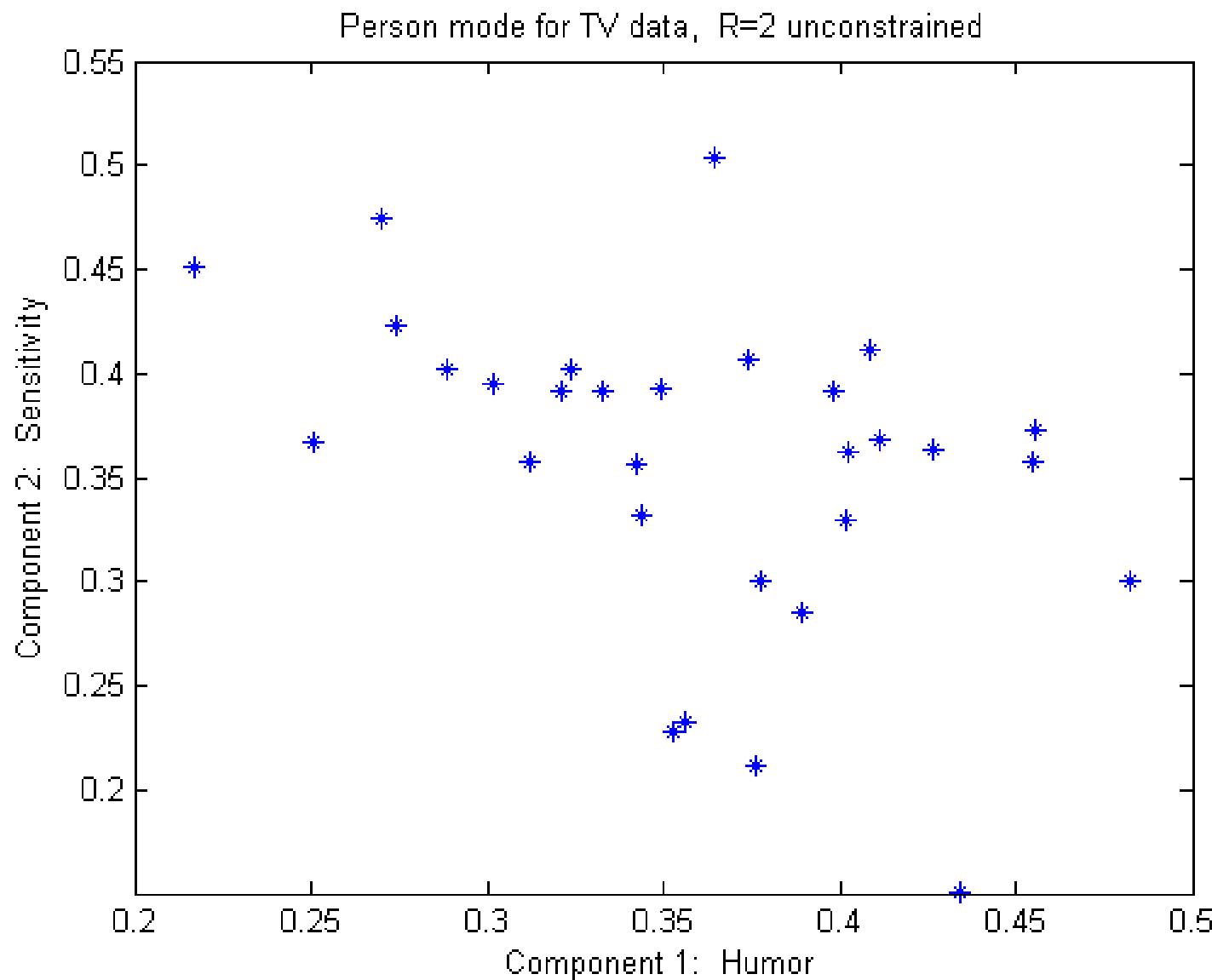
TV shows mode



Scales mode



Components 1 and 2 – persons plot



The CP solution with 3 components

Overall: $fit = 50.76 \%$ $cc(1,2) = -0.996$

$cc(1,3) = -0.13$

$cc(2,3) = 0.12$

Comps. 1+2: $fit = 20.11 \%$ $g_1 = 15.23$

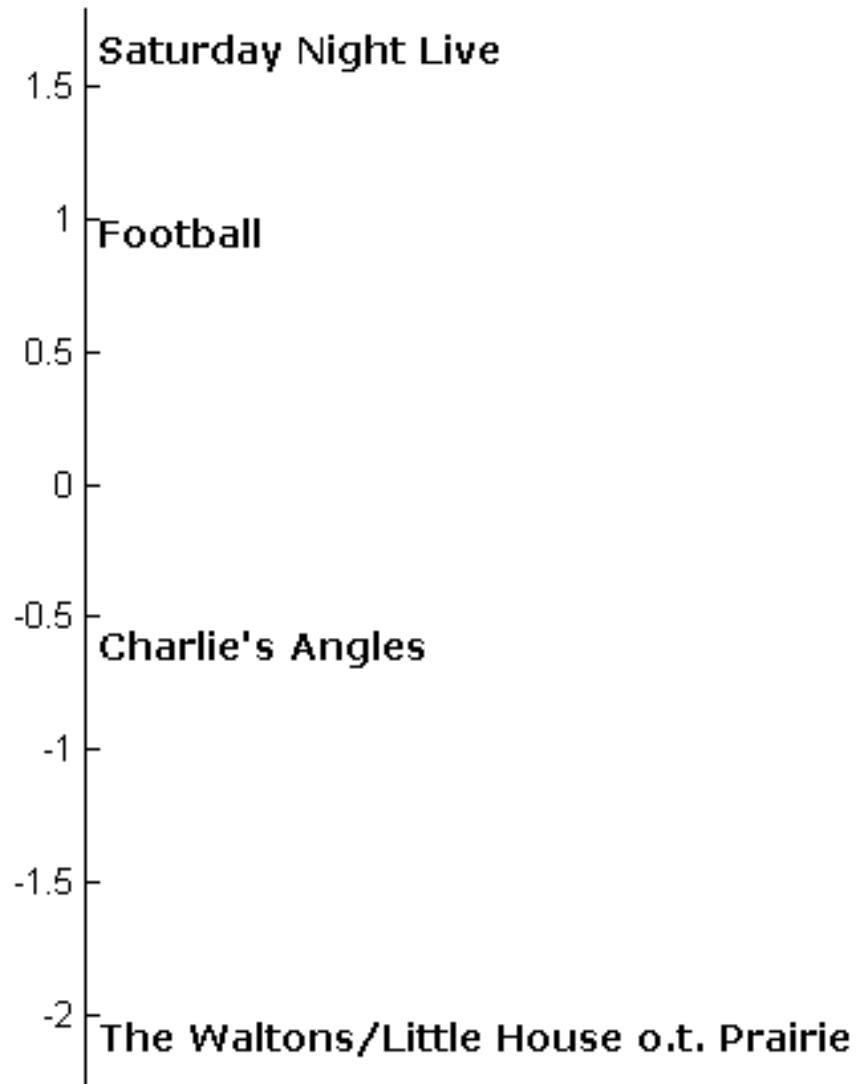
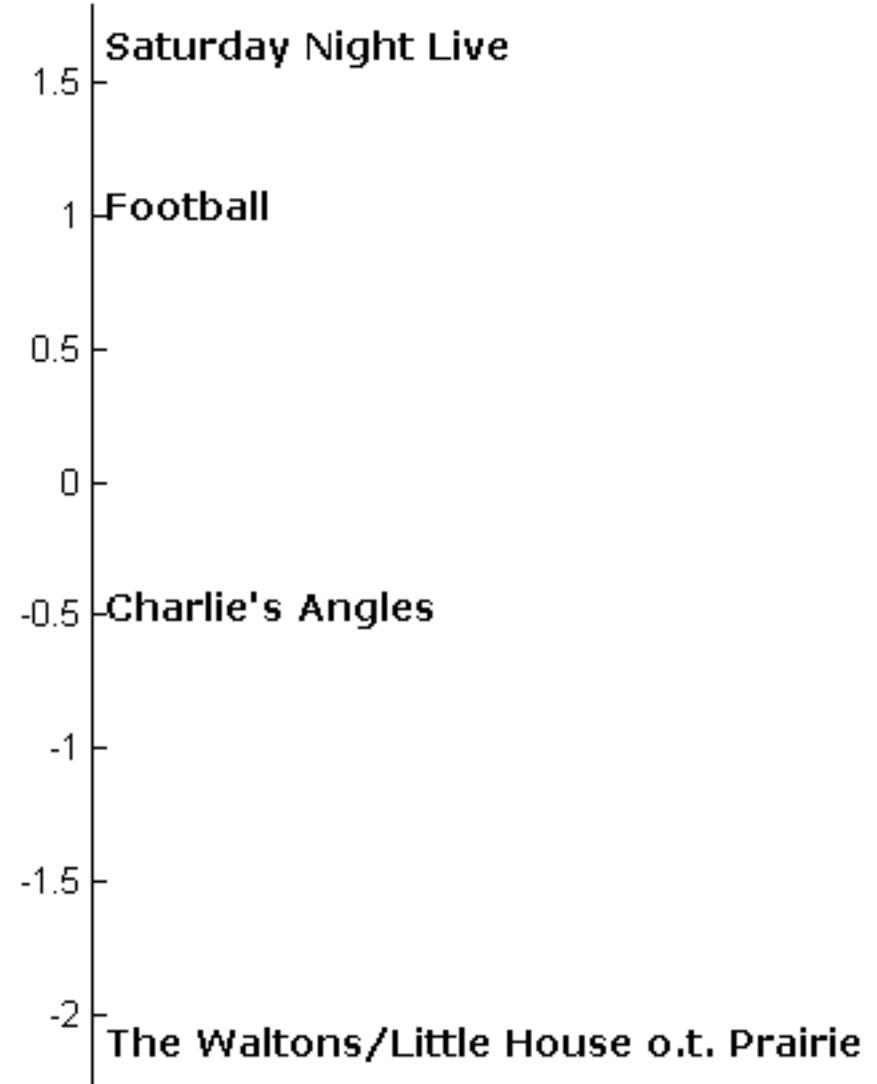
$g_2 = 15.39$

Component 3: $fit = 24.38 \%$ $g_3 = 1.52$

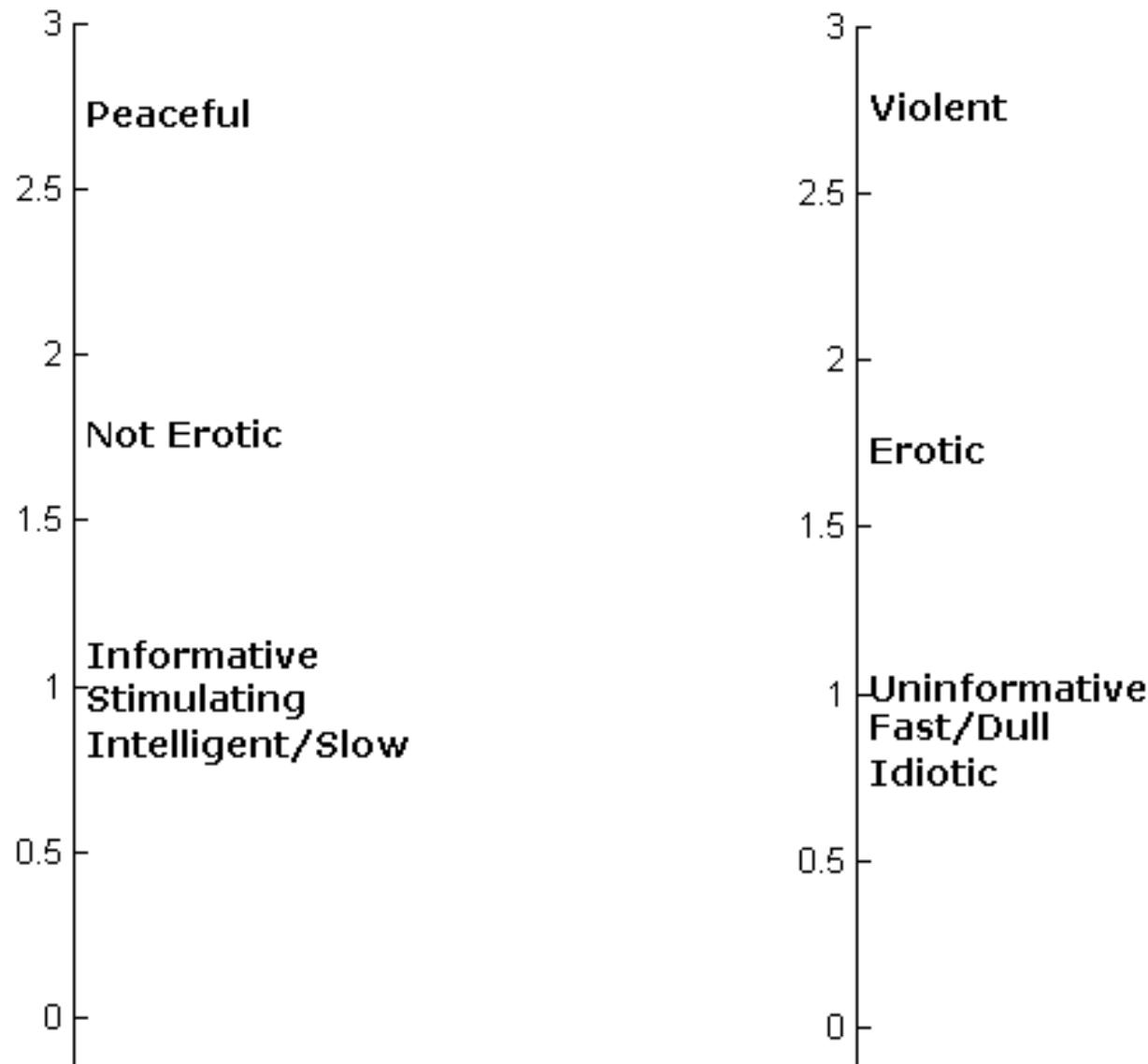
Interpretation: Components 1 & 2 = ???

 Component 3 = "Humor"

Components 1 and 2 – TV shows mode



Components 1 and 2 – Scales mode



Comparing the solutions for R=2 and R=3

congruence coefficients of R=2 components (columns)
and R=3 components (rows):

	“Humor”	“Sensitivity”
Comp. 1	-0.15	-0.41
Comp. 2	0.15	0.46
“Humor”	0.93	0.01

Some Theory

- Diverging components occur when CP does not have an optimal solution, i.e., best rank- R approximation does not exist (Krijnen et al., 2008; De Silva & Lim, 2008)
- CP has an optimal solution if the columns of **A** (or **B** or **C**) are restricted to be orthogonal (Harshman & Lundy, 1984; Krijnen et al., 2008)
- CP has an optimal solution if the data is nonnegative and **A,B,C** are restricted to be nonnegative (Lim, 2005; Lim & Comon, 2009)

R=3 components and orthogonal TV shows mode

Overall: fit = 50.22 % $cc(r_1, r_2) = 0$

Component 1: fit = 27.19 % $g_1 = 1.43$

Component 2: fit = 13.04 % $g_2 = 0.99$

Component 3: fit = 9.99 % $g_3 = 0.87$

Interpretation:

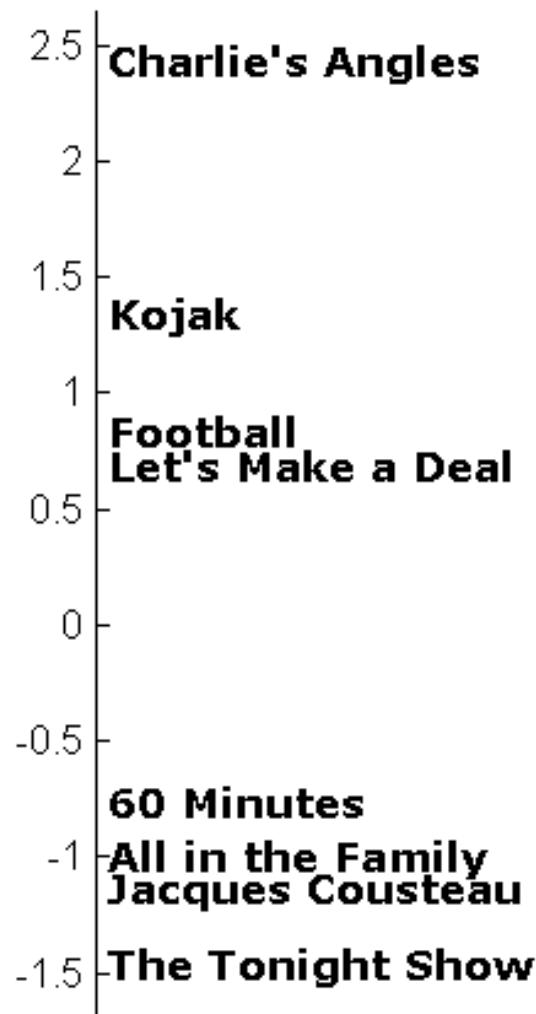
Component 1 = "Humor"

Component 2 = "Sensitivity"

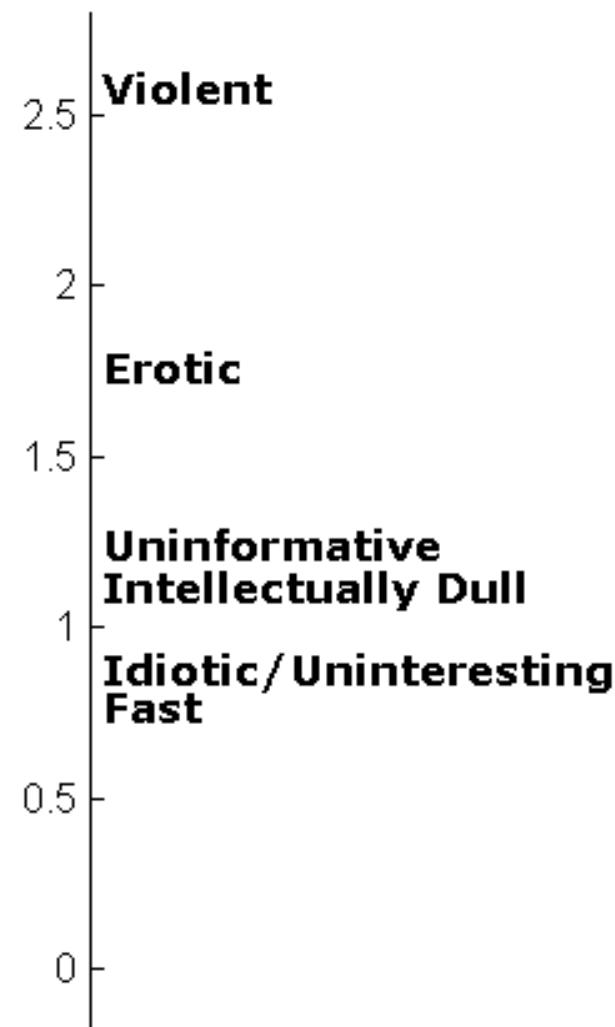
Component 3 = "Violence"

Component 3 = "Violence"

TV shows mode



Scales mode

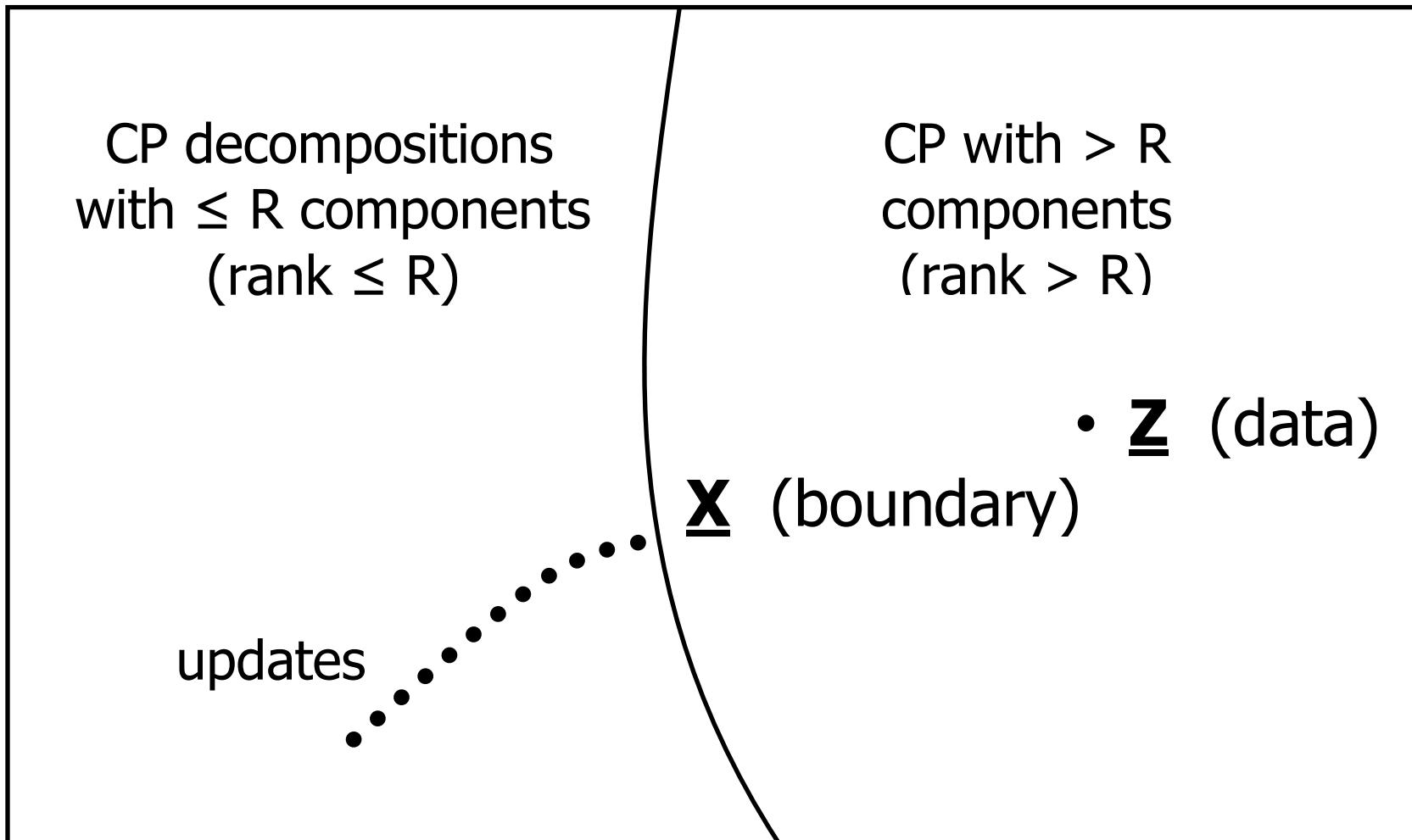


Comparing the solutions obtained so far

	R=2		R=3		
R=3 orth.	“H”	“S”	Comp.1	Comp.2	“H”
“Humor”	0.96	0.00	-0.20	0.19	0.95
“Sensitivity”	0.00	0.94	-0.30	0.36	0.03
“Violence”	0.11	0.08	0.30	-0.24	-0.03
“H” (R=2)			-0.15	0.15	0.93
“S” (R=2)			-0.41	0.46	0.01

→ the two diverging components relate to “S” and “V”

Some more Theory



- CP does not have an optimal solution if optimal boundary point $\underline{\mathbf{X}}$ does not have rank $\leq R$
- In that case, the decomposition of $\underline{\mathbf{X}}$ contains one or more interaction terms, e.g., $\mathbf{s}_2 \circ \mathbf{t}_1 \circ \mathbf{u}_2$

→ How to find $\underline{\mathbf{X}}$ and its decomposition?

Algorithms exist for:

- $I \times J \times 2$ arrays and $R \leq \min(I, J)$
(Stegeman & De Lathauwer, 2009)
- $I \times J \times K$ arrays and $R=2$
(Rocci & Giordani, 2010)

Two-stage method for $I \times J \times K$ arrays and general R

First fit CP. In case of diverging components, do this:

- For combinations of nondiverging and groups of 2,3,4 diverging components, the form of the decomposition of the limit point $\underline{\mathbf{X}}$ has been proven (Stegeman, 2012,2013)
- This form of decomposition is fitted to the data $\underline{\mathbf{Z}}$ with initial values obtained from the diverging CP decomposition (Stegeman, 2012,2013)
- This yields $\underline{\mathbf{X}}$ and its decomposition with interaction terms (Stegeman, 2012,2013)

The form of the limit of two diverging components is:

$$g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1) + g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1) + g_{212} (\mathbf{s}_2 \otimes \mathbf{t}_1 \otimes \mathbf{u}_2)$$

For the TV data with $R=3$, we fit the decomposition:

$$\begin{aligned} & g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1) + g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1) + g_{212} (\mathbf{s}_2 \otimes \mathbf{t}_1 \otimes \mathbf{u}_2) \\ & + g_{333} (\mathbf{s}_3 \otimes \mathbf{t}_3 \otimes \mathbf{u}_3) \end{aligned}$$

Decomposition of the limit point in 4 terms

Overall: fit = 50.7571 % (50.7569 for R=3)

$g_{111} (\mathbf{s}_1 \mathbf{o} \mathbf{t}_1 \mathbf{o} \mathbf{u}_1)$: fit = 7.62 % $g_{111} = 0.99$

$g_{221} (\mathbf{s}_2 \mathbf{o} \mathbf{t}_2 \mathbf{o} \mathbf{u}_1)$: fit = 10.75 % $g_{221} = 0.95$

$g_{212} (\mathbf{s}_2 \mathbf{o} \mathbf{t}_1 \mathbf{o} \mathbf{u}_2)$: fit = 1.55 % $g_{122} = 0.33$

$g_{333} (\mathbf{s}_3 \mathbf{o} \mathbf{t}_3 \mathbf{o} \mathbf{u}_3)$: fit = 24.37 % $g_{333} = 1.52$

Interpretation: \mathbf{s}_1 and \mathbf{t}_1 = "Violence"

\mathbf{s}_2 and \mathbf{t}_2 = "Sensitivity"

\mathbf{s}_3 and \mathbf{t}_3 = "Humor"

Comparison to R=3 solution with orth. TV shows

	“Humor”	“Sensitivity”	“Violence”
$g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1)$	-0.07	0.13	0.86
$g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1)$	0.05	0.81	0.02
$g_{212} (\mathbf{s}_2 \otimes \mathbf{t}_1 \otimes \mathbf{u}_2)$	-0.03	-0.02	-0.03
$g_{333} (\mathbf{s}_3 \otimes \mathbf{t}_3 \otimes \mathbf{u}_3)$	0.95	0.04	-0.03

Interpretation of the decomposition in 4 terms

\mathbf{s}_r = TV show component r

\mathbf{t}_r = Rating scale loadings r

\mathbf{u}_r = Idealized person r

	TV shows	scales	id. person	weight g
$(\mathbf{s}_1 \mathbf{o} \mathbf{t}_1 \mathbf{o} \mathbf{u}_1)$	Violent	Violence	1	0.99
$(\mathbf{s}_2 \mathbf{o} \mathbf{t}_2 \mathbf{o} \mathbf{u}_1)$	Sensitive	Sensitivity	1	0.95
$(\mathbf{s}_2 \mathbf{o} \mathbf{t}_1 \mathbf{o} \mathbf{u}_2)$	Sensitive	Violence	2	0.33
$(\mathbf{s}_3 \mathbf{o} \mathbf{t}_3 \mathbf{o} \mathbf{u}_3)$	Humorous	Humor	3	1.52

Note: $\mathbf{u}_2 > 0$ or $\mathbf{u}_2 < 0$ varies per person

Remarks on TV-ratings analysis

- The decomposition of the limit point resembles the R=3 CP solution with orthogonal scales.
- However, orthogonality between “Sensitivity” and “Violence” is not intuitive.
- The sign of the interaction term between “Sensitive” TV shows and “Violence” scales differs per person.
- The decomposition $g_{111} (\mathbf{s}_1 \otimes \mathbf{t}_1 \otimes \mathbf{u}_1) + g_{221} (\mathbf{s}_2 \otimes \mathbf{t}_2 \otimes \mathbf{u}_1) + g_{212} (\mathbf{s}_2 \otimes \mathbf{t}_1 \otimes \mathbf{u}_2)$ is only partially unique, but this does not affect interpretation.

General Remarks

- General results on (non)existence of best rank-R approximations only exist for:
 - $R=1$ best approx. always exists
 - \underline{Z} $2 \times 2 \times 2$ and $R=2$
(De Silva & Lim, 2008)
 - \underline{Z} generic $I \times J \times 2$ and $R \geq 2$
(Stegeman, 2006, 2008, 2015)
- The form of the decomposition of the limit point \underline{X} is a generalization of the Jordan canonical form for matrices
(Stegeman, 2013)

References

- De Silva, V. & Lim, L-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM Journal on Matrix Analysis and Applications*, **30**, 1084-1127.
- Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended Parafac model. In: *Research Methods for Multimode Data Analysis*, H.G. Law et al., Editors, Praeger, New York, pp. 216-284.
- Harshman, R.A. (2004). The problem and nature of degenerate solutions or decompositions of 3-way arrays. Talk at the Tensor Decompositions Workshop, Palo Alto, CA, American Institute of Mathematics.
- Krijnen, W.P., Dijkstra, T.K. & Stegeman, A. (2008). On the non-existence of optimal solutions and the occurrence of “degeneracy” in the Candecomp/Parafac model. *Psychometrika*, **73**, 431-439.
- Lim, L.-H. (2005). Optimal solutions to non-negative Parafac/ multilinear NMF always exist. Talk at the Workshop of Tensor Decompositions and Applications, CIRM, Luminy, Marseille, France.
- Lim, L.-H. & Comon, P. (2009). Nonnegative approximations of nonnegative tensors. *Journal of Chemometrics*, **23**, 432-441.

- Lundy, M.E., Harshman, R.A., & Kruskal, J.B. (1989). A two-stage procedure incorporating good features of both trilinear and quadrilinear models. In: *Multiway Data Analysis*, R. Coppi & S. Bolasco (Editors), North-Holland, pp. 123-130.
- Rocci, R. & Giordani, P. (2010). A weak degeneracy revealing decomposition for the Candecomp/Parafac model. *Journal of Chemometrics*, **24**, 57-66.
- Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for $p \times p \times 2$ arrays of rank $p+1$ or higher. *Psychometrika*, **71**, 483-501.
- Stegeman, A. (2008). Low-rank approximation of generic $p \times q \times 2$ arrays and diverging components in the Candecomp/Parafac model. *SIAM Journal on Matrix Analysis and Applications*, **30**, 988-1007
- Stegeman, A. (2012). Candecomp/Parafac – from diverging components to a decomposition in block terms. *SIAM Journal on Matrix Analysis and Applications*, **33**, 291-316.
- Stegeman, A. (2013). A three-way Jordan canonical form as limit of low-rank tensor approximations. *SIAM Journal on Matrix Analysis and Applications*, **34**, 624-650.

- Stegeman, A. (2014). Finding the limit of diverging components in three-way Candecomp/Parafac - a demonstration of its practical merits. *Computational Statistics & Data Analysis*, **75**, 203-216.
- Stegeman, A. (2015). On the (non)existence of best low-rank approximations of generic $I \times J \times 2$ arrays. Submitted. arXiv: 1309.5727
- Stegeman, A. & De Lathauwer, L. (2009). A method to avoid diverging components in the Candecomp/Parafac model for generic $I \times J \times 2$ arrays. *SIAM Journal on Matrix Analysis and Applications*, **30**, 1614-1638.